Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.
نویسندگان
چکیده
Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions.
منابع مشابه
Tribo-biological deposits on the articulating surfaces of metal-on-polyethylene total hip implants retrieved from patients
Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to e...
متن کاملWear Characteristics of Metallic Biomaterials: A Review
Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its ...
متن کاملBiomaterials in Hip Joint Replacement
Total hip joint replacement is unavoidable in the orthopedic application, for improving the quality of patient life suffering from arthritis. Replacing damaged joint with artificial joint gaining popularity and it became a need in such cases. While joint replacement represents success stories in the field of orthopedic surgery, but maintaining implant for last long is still challenge. The avera...
متن کاملScreening Potential Biomaterials of Ti- and Zr-Based Metallic Glasses Rapidly
Corrosion phenomenon is the important factor in the field of biomaterial applications. The corrosion resistance of the metallic glasses was investigated by the cyclic voltammetry and a low-voltage potential state test of the cell membrane potential simulation in the simulation body fluid Hank’s solution in this paper. The potential Tiand Zr-based metallic glasses were screened rapidly to test t...
متن کاملElectric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.
Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2012